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Previous work on irrotational incompressible inviscid flow (Guiraud & Zeytounian 
1977) is extended to rotational and compressible flow. A formal proof is given that, 
within the core, one may avoid computing with the sheet by defining an equivalent 
continuous flow. One shows how the vorticity and the entropy gradient between the 
turns of the sheet are transported along trajectories of the equivalent continuous 
flow. 

1. Introduction 
The flow configuration with a rolled vortex sheet is a very basic one in fluid dynamics. 

It appears as one of the ways in which vorticity concentrates in slender regions. Two 
classical examples are vortex concentration in vortex filaments trailing behind the 
tips of wings (Widnall 1975) and vortex concentration in the leading-edge vortex of 
swept wings (Smith 1968), but many other situations are relevant, namely, for example, 
vortex concentration in shear flows (Damms & Kiicheman 1974; Patnaik, Sherman & 
Corcos 1976; Corcos & Sherman 1976). 

This explains the great deal of effort which has been devoted to the purpose of 
devising efficient numerical schemes for the computation of rolled vortex sheets 
(Moore 1974; Chorin & Bernard 1973; Fink & Soh 1978). Up to now, all the schemes 
which have been used fail to give a representation of the core when the turns of the 
sheet are very closely spaced. 

Clearly, this belongs to the somewhat vaguely defined category of stiff problems. 
What is stiff in this flow configuration is the very rapid variation of various quantities 
transversely to the sheet, so that an accurate numerical treatment would necessitate 
an exceedingly refined mesh in the core region. 

Clearly there is a need for a lucid combination of analytical and numerical approach 
as to the problem of rolled vortex sheets. Following Guiraud & Zeytounian (1977), to  
which we will refer as GZ in what follows, Huberson (1980) succeeded in a preliminary 
investigation of this nature. 
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The work of GZ deals with incompressible irrotational flow with embedded tightly 
wound rolled vortex sheets. The main result of that work may be expressed quite 
simply. It states that one may define an equivalent continuous, rotational, incompres- 
sible flow, ruled by Euler equations. This statement eliminates the need of computing 
with an exceedingly refined mesh, adapted to the small spacing between the turns 
of the sheet. The theory provides an algorithm which, in an asymptotic sense, is able 
to rebuild a posteriori the irrotational flow with vorticity concentrated on the sheet. 
Huberson has devised a numerical algorithm which realizes a shift from the computa- 
tion with point; vortices, in the region outside of the core, to one with spread vorticity 
within it,  The technique was applied to the problem of rolling-up ofa two-dimensional 
unsteady vortex sheet, with elliptical distribution of vorticity initialIy concentrated 
on a straight segment. As is well known, this configuration simulates the sheet trailing 
behind a wing. 

Here we extend the work of GZ in order to deal with flows which are both com- 
pressible and rotational. The same idea appears to work as well. One may define an 
equivalent continuous flow obeying the compressible Euler equations and, from it, we 
are able to devise an analytical algorithm which allows us to rebuild, in an asymptotic 
sense, the actual flow with a rolled sheet. 

The main new feature is the occurrence of entropy gradients and of two kinds of 
vorticity. There is first the distributed vorticity and then the one concentrated on the 
sheets. Both are summed up in the equivalent continuous flow, and the analytical 
algorithm must be able to separate them out. The same will be done with the entropy 
gradient. 

Previous works on the analytical description of rolled vortex sheets, in an asyrnp- 
totic sense, are by Mangler & Weber (1967) and by Moore (1975) on the problem dealt 
with in GZ. On the other hand, Brown & Mangler (1967) have extended the work of 
Mangler & Weber (1 967) to compressible, barotropic, irrotational flow. Of course, the 
main new feature brought into the scheme by rotationality and entropy gradient is 
absent in their analysis. 

2. The double-scale structure 
We work with the compressible Euler equations written in dimensionless, conser- 

vative form 

Here, t is time; x l ,  x2 ,  x3  are the Cartesian components of the position vector x; ul, u2, u3 
are the Cartesian components of the velocity vector u; p is the density, p the pressure, 
S the specific entropy and y is the ratio of specific heats. The characteristic, constant, 
Mach number Mo appears as a result of working in dimensionless form. To (1) we 
must add an equation of state, namely 

(3) p = py exp (S). 
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It will be convenient to consider as the basic dependent variables p ,  u and S and 
we write in a shorthand notation 

@ = (p ,  u1, u2, u3, 4. 
It is fairly obvious that 9'- is a function of @ and that  

d y  = A,(@)d@, dFk  = Ak(@)d@,  

(4) 

(5) 

where A, and A, are 5 x 5 matrices depending on @. We shall use the vorticity 

and the classical vorticity equation 
0 = V A U ,  (6) 

1 VpAVp 
w - ( w . V ) u + ( V . u ) o  =-pa 

YMi P2 
(7) 

We refer to GZ for a thorough discussion of the double scale concept as used in this 
problem and we merely state here that we look for an approximate solution in the 

(8) 
following form 

where x is a normalized fast variable which deEcribes the process of crossing the turns 
of the rolled vortex sheet. More precisely, we require that the function x be such that 
the rolled sheet be mapped onto 

where k runs through the positive and negative integers. Now, in the spirit of short- 
wave asymptotics (%'hitham 1974, cha. 14; Germain 1971, 1977), we may put in a 
very simple mathematical way the assumption that the sheet is tightly wound; it 
suffices to set 

w, x) = @*(t, x, X(t, x)), 

x = ( 2 k + l ) n ,  (9) 

9 = c-10, vx == c-lk, (10) at 

where C < 1, is a small closeness parametel?. 
Following GZ we normalize the short scale structure by demanding that @* be 2n - 

periodic with respect to x. We define an averaging operation with respect to x in the 
following way 

( 1 1 )  

and we write f=f+f,  f = o .  
From (8 ) ,  (10) the equation (1)  reads 

av-* 
ax ax at ax, 

a s *  +c(-+-) av-* a s *  = 0, 8-+kk.--2_ 

and, in a similar way, (7) may be rewritten as follows : 

a o  * au * ap* 

ax ax ax 
(0 + k .  u*) - - (k , o*) - + (k A Vp*) + - (Vp* A k)) 

+ c( ( i + u *  .v) "* - (w* .V)u* + (V .u*) w* +- 1 VP*A VP*) = 0, (14) 
YMi 

while, from the definition of vorticity ( 6 ) )  we get 

au * 
ax 

kA-+C(VAU*-o*) = 0. 
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The occurrence of the small parameter C in (13),  (14) and (15) will allow us to work 
out an expansion technique and to derive the algorithm that is referred to in 9 1. 
Previous to doing this we remark that, thanks to  the periodicity with respect to x, 
we obtain a useful result by applying the averaging operation (1 1) to (1 3). In  carrying 
out this process we need to be cautious because V* and 9 7  are discontinuous across 
the sheet. Fortunately, if we set [f] for the discontinuity off, we have 

[8V*  + k j S ; ]  = 0 (16) 

and this allows us to write down immediately the average of (13) in the following 
form 

For further reference we state here the conditions to be satisfied on the sheet, namely 
the kinematic condition 

8+k.u* = 0, on x = ( 2 k + l ) n ,  (18) 

and the dynamic one [p*] = 0. (19) 

3. The closeness expansion process 
We take care of the fact that the turns of the sheet are closely spaced by expanding 

with respect to C as follows : 
a" = @,*+C@f+ ..., 

(8,  k) = (oo, ko) + C(B,, k,) + . . . , 
a* = a,*+Cwf+ ... . and, similarly, 

To zero order from (13), (14), (15), (3) we find 

p$ = ~ $ 7  exp (S:). 

On the other hand, from (18) and (19) we get 

Oo+ko.u,* = 0 on x = (2k- t  l )n ,  

[Po*] = 0. 
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We shall prove in a moment that 

but, delaying the proof, we draw the consequences. 
First, from (23) we conclude that  

B,+k,.u$ = 0 

holds throughout. Then, from (22) we get 

and observing that Vp$ A k, + 0, except a t  exceptional points, we obtain 

397 

(25) 

From (28) and (17) it is obvious that the zeroth-order quantities u$,p$,S$ must be a 
solution of the classical compressible Euler equations : 

This is a very simple proof of the correepondence between the flow with the tightly 
wound rolled sheet and the continuous flow without a sheet. When we proceed to the 
next order we shall And how the sheet and the corresponding discontinuities may be 
recovered. For the present time we give a formal proof of (26). Assume the contrary, 
then 8, + k,. u$ + 0 away from the sheet, except a t  isolated values of x. From the 
third of (22) we find that aS,*/ax = 0 and, a,* being the non-dimensional speed of 
sound, 

If we eliminate au;/ax from the first two of (22) we obtain 

(8  o +  0 
k . ~ $ ) 2 2 - 2 -  aP* lk I”Pt = 0, 

ax YM: ax 
and, as it is obvious that x = const. is not a sound wave, (30) and (31) imply that 
aptlax = ap$/ax = 0, but, then, the first of (22) is in contradiction with the assumption 
that (25) does not hold throughout. 

4. Transport equations for the saw-tooth structure 
As in GZ the saw-tooth structure of the vorticity profile transverse to the sheet is 

obtained when we go to the first order and try to compute u,*, pT , p: and S:. After some 
very simple algebra we find 

I au* 

ax I k,l ‘2 = k, A (v A u;) - k, A w$, 
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From the first of (32) we see that k,. au:/ax = 0 and from the expansion of (18) to 
O(C) we easily conclude that 

holds throughout. 
Of course the equations (32) do not suffice for the determination of the dependence 

of u,*,p:,p:, S: on x, but we may find other equations as follows. First, if we expand 
the last of ( 1 )  to O(C2) it is found that 

O,+k,.u:+k,.u$ = 0, (33) 

(34) 
8s: 
-+u,*.vs:+u:.vs,* = 0, 

at 

provided that (33) is taken care of. A second equation may be found by expanding 
(14) to  O(C), namely 

This equation may be modified by remarking that, as a consequence of (29), we have 

( i+u ,* .  V) (V A u,*) -{(v A u,*). v)u,* + (V . u t )  (V A u,*) 
1 

+-,(v2)$ A vP$) = 0, (36) 
YMO 

so that remembering the first of (32) we find 

(4 + u,* . V) (k, A 3) - { (k, A 2). V) u$ + (V . u:) 
auf i 1 as: 
ax YM,2YP,* ax 

- {ko . (V A U,*))- + - - (k, A V&) - = 0. (37) 

(38) 
Do - a 

Setting == -,+u,*.v, 

let us consider the following system of two transport equations along the trajectories: 

-- k,. (V A u$) k,AV+- k0AVptX= 0, (39a) DoV (V. V) u$+ (V.U,*) v+  
YM: 7Pz Dt lkoI2 

. v  = 0. 
Do Z k, A VS,* 
Dt 4- lk,12 
- 

In a Lagrangian representation of the flow u;, p t ,  p$ and S$ this appears to be a 
aystem of ordinary differential equations. We observe that x does not appear in this 

(40) 
system. Let 

be the solution of this system corresponding to initial data Vo, Co, for t = to, then we 

(41) 
have 

This allows us to compute 6: and 8: at any time provided they are known at some 
initial time to. We observe that the transport operator F(t, to) does not depend on x. 

(V, C) = Y(t, to)  (VO, P), 

(k, A ti:, &) = F(t, to)  ((k, A ti:)o, &O).  
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(42) (k, A [U,*l, [fl?1) = m ((k, A [U:N0> [fl:I0), 

We may use (41)  to compute the transport of the discontinuities associated with the 
sheet, namely 

and we observe that, once these discontinuities have been transported, no new effort 
is necessary in order to detail the saw-tooth structure of the velocity and entropy. 
The corresponding signatures are transported without change, only their amplitudes 
being changed during the transport process. 

In  order that the transport process be consistent we need to verify that  it preserves 
k, . V = 0. This is easily done. Taking the gradient of (26)  we find a transport equation 
for k,, namely wo+ (Vu;) . k, = 0. 

Dt (43) 

We multiply ( 3 9 a )  through by k, and (43)  through by V and add the two results to get 

%(k,.V)+(V.u,*)(k,.V) Dt = 0, (44) 

from which it is obvious that the property k, . V = 0 is preserved under transport. 
We complete the solution to O(C)  by stating that 

which is the system of compressible Euler equations linearized about the solution 
u,*,p$,p;, S,*. We add a comment concerning the transport equations (39)  in the case 
considered in GZ. First the second equation does not occur, simply because there is 
no entropy variation to take care of. Second the first transport equation seems to 
disappear in GZ but it is simply trivially satisfied as a consequence of the fact that, 
then, au:/ax is proportional to V A u$ and that the condition k,. V A u$ = 0, holds in 
this case. As matter of fact it was shown in GZ that a transport equation for the 
vorticity concentrated on the sheet had to be satisfied, a condition which is fulfilled 
as a consequence of the equation corresponding to (36).  

A check on the theory is obtained by deriving the Brown & Mangler (1967) solution 
fror. Brown ( 1965) axisymmetric compressible solution for an inviscid homentropic 
leading-edge vortex. This last one is obtained under the slenderness assumption. Let 
u,* be this solution for the velocity field; we need only check that Brown & Mangler 
( 1  967) solution may be written as 

(47) 
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Here e stands for the slenderness parameter ( r / x  = O(s) ,  in Brown & Mangler nota- 
tions). We may check that C = O(e2) but due to the slenderness 

[Vxo. (V A u$) I/ I VXO I 
is O(e-1) so that the second term is O(E).  As a matter of fact the Brown & Mangler 
(1967) solution according to their formulae (46)-(48) may be written as 

u = u,+u12F-+o(e2), (48) 

where 2F- may be identified with - x. Brown & Mangler have checked that uo may be 
identified with u,*: the Brown (1965) solution. It is easily checked that, to the order 
considered, 

vxo- (V A u 3  
IVx0l2 

u1 = - 
and the agreement is complete. 

(49) 

5. Conclusion 
The main result of this paper is that once the flow contains a rolled sheet with closely 

spaced turns one may avoid computing with the rolled sheet within the core. Provided 
we know an asymptotic representation of the core a t  some initial time, consistent 
with the double.scale structure, then we are able to compute the evolution of this 
asymptotic representation. We need only compute the evolution of a continuous flow 
in the core region and transport the rolled sheet together with the corresponding dis- 
continuities of the velocity and the entropy along the trajectories of the continuous 
flow. All this may seem to be rather transparent from a physical point of view and the 
main interest of the paper stands in the formal proof that this is consistent with a 
systematic scheme of expansion with respect to a small closeness parameter. In  the 
same way one might take into account the effect of a small viscosity as in Guiraud & 
Zeytounian ( 1 9 7 9 ~ )  but the present purpose was to derive the rule of equivalence in 
order to use it in numerical computations of inviscid flow, so that we do not embark 
on such a work. We think that it should be considered in the more general setting of 
solutions of Navier-Stokes equations having a multiple scale structure, but this would 
carry us far ahead of %he limited scope of the present investigation. 

A more fundamental question, raised by one referee, concerns the stability of these 
rolled sheets. A simple-minded idea would be to examine the behaviour against 
Kelvin-Helmholtz instability of the sheet as if i t  were planar. According to this, the 
sheet would be destroyed in a time O(h/Cluz I ), and for wavelength of the order of the 
space between turns this time is O(D/(u$(), where D is the diameter of the core, that 
is of the order of the time needed for a particle to  make a few turns along the spiral. 
Of course this simple-minded argument may be completely irrelevant. As a matter of 
fact Moore (1976) following Moore & Griffith-Jones (1974) has shown that the s t a d t y  
problem may not be a local one. Anyway, Guiraud & Zeytounian (19793) have pre- 
sented an analysis which, again, shows that the stability problem is, in principle, not 
a local one. However for wavelengths fairly smaller than the spacing the mechanism 
responsible for instability is then the one for an infinite saw-tooth profile and it con- 
firms that the growth time is O(h/Clu$l) with h fairly smaller than D/(u,*(.  On the 
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other hand, for h = O(D/lu,*l) the stability analysis must involve the whole rolled 
vortex sheet in agreement with Moore (1976) conclusion. Anyway there is ample 
place for further analysis of this stability issue. 
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